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Abstract

Modern intra- and inter-enterprise collaboration requires
access to information spread over multiple autonomous and
heterogeneous data sources. In this paper we present a
loosely coupled multidatabase architecture enhanced with
P2P concepts. It achieves a reasonable tradeoff between
autonomy and information sharing among both, perma-
nently available and volatile data sources. Each data node
decides autonomously which kind of information to share.
Data availability, query performance, and up-to-dateness
on each participating data node is improved using a push-
based replication strategy, which propagates data modifica-
tions over multiple nodes.

1 Motivation
Since the first centralized databases found their way into
the enterprises in the late 60s, the needs and requirements
have changed towards a more distributed management of
data. Today there are many corporations which possess a
large amount of databases, often spread over different re-
gions or countries and generally connected to a network.
These local databases typically raised in an autonomous and
independent manner fitting the special needs of the users at
the local site. This leads to logical and physical differences
in the databases concerning data formats, concurrency con-
trol, the data manipulation language, or the data model [8].
It is crucial for a company to keep track of its distributed
data in such a heterogeneous environment. Cooperating de-
partments need shared access to this data, to be able to in-
crease their productivity. Multidatabases were introduced
for this reason, in order to integrate data from heteroge-
neous sources.
One of the main challenges in the integration of data in
such environments is the autonomy of the participating data
nodes. This autonomy implies the ability to choose its own
database design and operational behavior. Local autonomy

is tightly attached to the data ownership, i.e. who is respon-
sible for the correctness, availability, and consistency of the
shared data. Centralizing data means to limit local auton-
omy and revoke the responsibility from the local adminis-
trator, which is not reasonable in many cases. A federated
architecture for decentralizing data has to balance both, the
highest possible local autonomy and a reasonable degree of
information sharing [6]. Hence, the architecture of a com-
pany wide information system has to be applicable to the
data policy of the company and vice versa. To be more pre-
cise, the question of data ownership determines the compo-
sition of the company wide information platform, while it
has to ensure a high level of consistency and fail-safety.

In this paper we describe the D ÍGAME architecture, a
Dynamic Information Grid in an Active Multidatabase
Environment, which connects heterogeneous and au-
tonomous data sources to support loosely coupled intra- and
inter-enterprise collaboration. We have enhanced the multi-
database architecture of Heimbigner and McLeod [6] with
Peer-to-Peer (P2P) concepts to offer a flexible information
grid with high data availability to provide each participating
node of this grid with all the data required. Extending the
approach of Heimbigner and McLeod, our architecture en-
ables the sharing of information among both, permanently
available and volatile data sources without any central com-
ponent. For that we include a push-based replication mech-
anism which propagates data modifications over multiple
nodes. Thus, we are able to ensure high availability of data,
even if the original data source is temporarily unreachable.
Additionally, the replication of data increases query perfor-
mance, since we do not have to query remote data sources.
An information sharing environment, which comprises the
information shared by interconnecting heterogeneous and
autonomous data peers using our architecture, shall in the
following be referred to as an information or data grid [3].

The remainder of this paper is organized as follows. In sec-
tion 2 we start describing the architecture of our dynamic in-
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formation grid with an overview of the basic functionality.
Afterwards we discuss the major characteristics in section
3, followed by a description of our first wrapper prototype
in section 4. Section 5 discusses related work and section 6
concludes and draws up future work.

2 D ÍGAME Architecture
2.1 Basic Functionality

We now draw up the basic functionality of our enhanced
multidatabase architecture using a motivating example.
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Figure 1. Collaborative Work with D ÍGAME

Consider a worldwide operating company planning the
launch of a new product (Fig. 1). We assume that there are
three departments involved in this business process: the ex-
ecutive board (management), the sales office, and the prod-
uct engineering department. Each department manages its
own database to store the information for which it is respon-
sible in an autonomous way. The management produces
basic data of the product (A) including deadlines, descrip-
tions, workflows, and additional objectives. This manage-
ment information is substantial for the further product de-
velopment and the work in the participating departments.
The product engineering department uses a predefined part
of that management data (AC) as basic conditions for the
concrete implementation and technical realization of the
product. Local applications create additional data which
has to be stored separately (C). According to the product
engineering the sales department enriches the authoritative
management data (AB) with concrete concepts for the up-
coming product launch (B). Furthermore concrete develop-
ment plans of the product engineering are required to pre-
pare sales strategies (CB). Both, sales and product engi-
neering departments, concretize the strategic guidelines of
the management in their specific assignment. To keep track
of the costs and the progress of the project, it is indispens-
able for the management to access the product engineering
and sales department’s relevant information just mentioned
(BA, CA).

Sharing data within this company using our architecture is
realized using a push-based replication strategy to improve
data availability, query performance, and up-to-dateness on
each participating data node. Hence, the data source ac-
tively propagates data updates to relevant peers, which are
herewith able to maintain an up-to-date replica of the im-
ported data. For example, the creation of a new replica of
management data on department B is realized as follows:
each data source of the departments A, B and C is wrapped
by a source-specific wrapper component. These wrappers
build up a communication layer, which enables the depart-
ments to interact pair-wise using a common protocol. This
union adopts Peer-to-Peer concepts and operates without
any central administrative instance. Due to these character-
istics the combination of such a data source and its related
wrapper component can be named as a (data) peer.
The administrator of peer A makes a subset of its own lo-
cal data accessible using the administrative interface of the
wrapper component. The export schema [6] created this
way is managed by the wrapper component and specifies
the information that the department is willing to share. The
information concerning the access control to local data by
remote peers is attached to the export schema. Peer B is
now able to import the data into its local database subscrib-
ing to a specific part (AB) of the published data, i.e. the
data required by the department. During this subscription
process the data target (subscriber) informs the data source
(publisher), which subset of the export schema it is will-
ing to import. The data stock AB is then transferred to the
subscriber to perform an initial filling.
If a data or schema modification is detected by the wrap-
per of the publisher, all relevant subscribers have to be in-
formed. To determine whether the subscribers, including
peer B, have to be notified about this modification, the wrap-
per queries all export schemas in the repository. The mod-
ified data or schema items are then pushed actively to the
relevant subscribers using a semantically rich representa-
tion format. Each data peer is herewith able to maintain an
up-to-date replica of the data and schema items required by
local applications.
Now the management department has decided to involve
an external consulting group D to analyze and optimize
the productivity within corporate workflows. Therefore the
consultants need access to the entire management data, in-
cluding the data of departments B and C. Instead of negoti-
ating separate data exchanges with every single department,
our architecture enables the consulting group to obtain all
data required from only one data source, the management
department. This can be realized, since our architecture
supports the sharing of data imported from other nodes.
Please note, that the export of imported data must explic-
itly be allowed by the administrator of the management de-
partment. After the consulting has subscribed to the entire



management data, data updates in B and C are propagated
to A as usual. Node A delivers updates on its own data
stock and additionally those coming from nodes B and C to
its subscriber D. Due to this characteristic, node A becomes
a Data Hub for the consulting group according to the Link
Pattern Catalog introduced in [12].
We distinguish two different types of update propagation:
direct and indirect updates. After an update is detected on
local data of a data source, it is propagated to the relevant
subscribers. Referring to our example, B gets direct up-
dates, whenever modifications occur on the data stock of
node C. If a node explicitly shares a previously imported
data stock, its modifications are in turn propagated to other
subscribers. Referring to our example, node A shares pre-
viously imported data from peers B and C, which is sub-
scribed by the consulting group node D. If an update occurs
on B or C, it is first propagated to node A, which in turn
propagates it to its subscriber D. This sequence of update
propagation is called a cascading update.
Further partners may join this collaboration at any time.
In fact, each peer can be provided with any data concern-
ing the product launch stored in one of the collaborating
data nodes without interfering with existing data flows. The
data source maintained by the partner can on the other hand
be easily connected to the existing data grid sharing its
own data. If a peer is no longer willing to share its data,
it can easily be removed from the data grid, notifying all
its subscribers to remove the replicas from their local data
stocks. The support of this temporary collaboration makes
our D ÍGAME architecture particularly suitable for virtual
cooperations.

2.2 Components of the Architecture

In this section we discuss the components of our D ÍGAME
architecture (Fig. 2). The data grid DG := (P,C) created
by our architecture is a directed graph, which consists of
a set of peers P := {p1, ....pn} and a set of connections
C, where a connection c = (pi, pj) ∈ C links exactly two
peers, representing a data flow from pi to pj .
As already mentioned, each peer consists of a component
database and a corresponding wrapper component. These
components which are both required for establishing data
flows between communicating peers are described in the
following:

Wrapper: The core of our data grid is the wrapper com-
ponent, which provides a uniform interface to the heteroge-
neous component databases. It is responsible for negotiat-
ing and establishing communication among peers and co-
ordinates the data and schema exchanges after a communi-
cation channel has been set up. Each wrapper maintains a
repository in its corresponding data source to store informa-
tion about subscribers, export and import schemas, access
control lists, and delivery schedules.

Figure 2. D ÍGAME Architecture

Each wrapper has to realize two major tasks: exporting
and importing data and schema items. To export local
data from a peer p, a set of export schemas XSp :=
{XSp1, ..., XSpi} is maintained by the wrapper of p. To al-
low indirect updates, those export schemas have to be based
on the entire conceptual schema CSp of the database, ex-
cluding RSp, the schema of the repository stored on p, i.e.
∀XS ∈ XSp : XS ⊆ CSp \ RSp. They are required
to determine, which peers have to be informed about data
modifications. Since exporting peers actively propagate the
data and schema to relevant subscribers, they must be able
to detect modifications on their local data stock. Earlier re-
search proposes several mechanisms helping a wrapper to
monitor data modifications [13]. If there are triggers of un-
derlaying database systems available, they should be used,
particularly their enhanced functionality given by recent de-
velopments in database systems [11].
To import data from a remote peer p, the wrapper on a
peer q (p 6= q) maintains a set of import schemas ISq :=
{ISq1, ..., ISqj}, where

∀q ∈ P ∀IS ∈ ISq ∃1p ∈ P ∃1XS ∈ XSp : IS = XS∧p 6= q (1)

and
∀p ∈ P ∀XS ∈ XSp ∃1q ∈ P ∃1IS ∈ ISq : XS = IS∧q 6= p (2)

After the initial import of subscribed data, each data and
schema modification propagated by remote peers is repro-
duced locally in the workspace of the wrapper.

Autonomous Component Databases: According to the
Three Schemas Architecture and the architecture for loosely
coupled multidatabases [6], each component database on
a peer q contains several types of schemas (see Fig. 2).
The private schema PSq stores data, which is locally pro-
duced and maintained. It is controlled exclusively by the
local database administrator. Other peers do not have di-
rect access to this data. Besides the private schema, the
conceptual schema CSq comprises the disjoint union of the
import schemas and the repository mentioned above, i.e.
CSq := (

⋃̇
IS∈ISq

IS)∪PSq∪RSq, where IS∩PSq = ∅.



Local applications Aq1, ..., Aqf can now access and process
the data of the conceptual schema excluding the reposi-
tory information as usual using a set of external schemas
ESq := {ESq1, ..., ESqd}. The only limitation is the read-
only access to data derived from the imported schema.
Please keep in mind that the imported data and the repos-
itory are exclusively managed by the wrapper component
and should never be modified by the local administrator or
applications, although this would be possible due to the lo-
cal autonomy. In fact, future implementations could support
such multi-master replication techniques.

3 Characteristics
In this section we discuss the major characteristics of our
D ÍGAME architecture including the advantages and limita-
tions related to its implementation.

Autonomy and Heterogeneity: Our architecture is based
on the concept of loosely coupled multidatabases of Heim-
bigner and McLeod [6] using import and export schemas for
data exchanges. The aim of this architecture is to achieve a
feasible trade-off between local autonomy and a reasonable
degree of information sharing. A data source is basically
free to decide on its own level and form of participation.
This includes the ability to decide which data it is willing
to export, which data is imported, and during which periods
services are provided.
Our architecture supports the integration of principally any
kind of data source using a wrapper component tailored to
that specific data source. The wrapper provides an uniform
interface for the D ÍGAME system, where communication is
performed using a standardized protocol and exchange for-
mat.

No Central Authority: Any information sharing environ-
ment based on our D ÍGAME architecture interconnects au-
tonomous and previously isolated data peers. Each partic-
ipating data node keeps full control over its own data, i.e.
there is no central authority imposing certain restrictions.
Contrary to other approaches like [14] we do not use any
central component, where publications or subscriptions are
managed. In our system, peers subscribe directly to data
published by other nodes. The information on the data of-
fered is not managed centrally, but stored exclusively on the
corresponding peers.

Wrapper organized similar to P2P systems: We have en-
hanced the multidatabase architecture with P2P concepts.
The wrappers in our architecture interact similar to classi-
cal P2P networks. Data exports and imports are exclusively
negotiated pair-wise, whereas each peer is basically able to
interact with any number of data nodes. The entire commu-
nication is realized without any central authority, resulting
in a network of self-responsible peers, where members are
basically able to join or leave at any time.

Replication: The replication of data is one of the main fea-
tures of our D ÍGAME architecture. Data availability is im-
proved in the information grid allowing a data stock to be
directly or indirectly replicated over multiple peers. This
means, that required data is accessible, even if the original
data node is temporary unavailable. Furthermore query per-
formance is increased, since all the required data is stored
locally.
The refreshment strategies for updating the replicas depend
on the application field. We are basically not limited to a
single delivery schedule, but able to provide specific repli-
cation strategies depending on the needs of each subscrib-
ing peer. Generally, the preferred delivery schedule is an
immediate propagation of updates, but other possible de-
livery schedules can be, but are not limited to periodical
or even aggregated propagation. The replication is man-
aged by the wrapper component, which holds information
about each subscribing database and its corresponding de-
livery schedule in its corresponding repository. D ÍGAME
uses lazy replication protocols with one single master and
multiple read-only replicas.

Push-based Protocol: A further central characteristic of
our architecture is the push-based propagation of data and
schema modifications to subscribing peers. At first a data
peer subscribes to data offered by a data source, whereupon
it receives once a complete copy of the requested data. Af-
terwards the data source pushes all relevant updates directly
to the subscribers according to their specific delivery sched-
ule. This modifications are passed on to further subscribers
using indirect updates, until all replicas are updated. Each
peer maintaining a replica of remote data is herewith able to
access data, which is as up-to-date as possible, even if the
original data source is temporary not available.
If a replica can not be updated, because a subscriber is cur-
rently not reachable, we have decided to include a pull-
based fallback mechanism into our architecture. After the
communication has been reestablished, the data target can
then actively query the data source whether data updates
have occurred since their last contact. Thereupon lost up-
dates are propagated once again to the data target.

Standardized Exchange Format: The dynamic intercon-
nectivity of data peers requires a standardized exchange for-
mat, suitable for both, data and schema representation. Us-
ing knowledge representation techniques we can guarantee
that every single data peer understands data and schema up-
dates without explicitly arranging an exchange format. The
additional integration of identifiers for data items (e.g. [9])
within the data exchange process simplifies data mainte-
nance, especially if data is imported from multiple sources.
This meta information may furthermore be useful for de-
tecting and solving conflicts within the data.
We have decided to use the Web Ontology Language OWL
as the common representation format for our architec-



ture, since it provides several advantages over classical
(semi)structured exchange formats. Based on a meta rep-
resentation of (relational) databases we can describe the
schema of virtually any database. Thereupon the schema
representation itself can be used as an OWL ontology, to
base the representation of the actual data on. This flexible
and powerful technique is only possible due to the possibil-
ities given by OWL Full to interpret an instance of a meta-
model as a novel ontology.
The representation of relational data and schema with the
Web Ontology Language OWL entails several advantages
over classical (semi)structured exchange formats like XML.
A detailed discussion on this topic can be found in [10].

Local Integration: As already mentioned above, each peer
may subscribe to multiple data sources. For each subscrip-
tion it obtains an exact copy of the relevant remote data and
schema items. Since we do not have a global schema, the
imported data is integrated individually following local inte-
gration strategies, which are not provided by our D ÍGAME
architecture. Having all required data stored in the local
database, we are particularly able to associate local and re-
mote data with integrity constraints provided by the data-
base, e.g. foreign keys. Furthermore index structures can be
created on imported data to optimize data access according
to local query requirements.

4 D ÍGAME System Design
Now we give a brief overview of the design of our first
D ÍGAME wrapper prototype. The components required are
depicted in Fig. 3. Our system is divided into two con-
ceptual layers: a source specific and a source independent
layer. Both layers interact exclusively using Java objects.
The source specific layer contains all classes and packages,
which are customized to the specific data source. This layer
has to be implemented for each type of data source and pro-
vides a uniform interface for the classes of the source in-
dependent layer. Thus, new data sources can be supported
exchanging solely the source specific components, leaving
the remaining components unchanged.
The main component of our system is the D ÍGAME Man-
ager. It initializes the remaining components and coordi-
nates the entire system flow. At first, it is responsible for
the creation and management of import and export schemas,
which are set up by the administrator using a correspond-
ing user interface and stored in the repository of the wrap-
per. Thereupon, the D ÍGAME Manager automatically han-
dles subscription and unsubscription requests to shared data
from remote peers and coordinates the data exchange dur-
ing data import and export processes. After a data mod-
ification has been reported, it determines the peers which
have to be provided with that updated data and initiates the
corresponding data transfers. Outgoing data is compressed
by the D ÍGAME Manager using the Compression Unit to

reduce network traffic.
The entire communication with the data source is handled
by the Data Handler. It consists of a set of functions pro-
viding a uniform interface to the data stored on that spe-
cific source. This interface is used by the D ÍGAME Manager
and the event detection packages to access the data and the
repository, which are stored both directly in the data source.
Thus, the access to both, the storage of data and meta data
are entirely managed by the Data Handler component. As a
result, all source specific properties, i.e. data model, query
language, or operating system are hidden from the compo-
nents of the source independent layer.
The Data Handler supports three types of interactions:
data requests, repository requests, and event notifications.
The D ÍGAME Manager component submits data requests,
whenever a new peer subscribes to the data or data up-
dates are received from remote peers. In the first case, data
items have to be transformed into the OWL exchange for-
mat, in the latter from OWL into the source specific data
format. These conversions are realized by the OWL con-
verter, closely attached to the Data Handler.
Changes on the local data stock are signalized to the Data
Handler via event notifications by the event processor.
These events are either detected by the notification interface
or the event monitor. If a data source supports extended trig-
gers, the notification interface is directly invoked by data-
base triggers to notify the event processor about local data
modifications [11]. Otherwise, such events have to be de-
tected by the event monitor, which therefore periodically
scans the local data stock.
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Figure 3. Design of the D ÍGAME wrapper

A communication between two peers is established using
the Negotiator. It interacts with remote peers using a spe-
cial protocol to establish a secure communication channel.
After the successful authentication and authorization it is
used by the D ÍGAME Manager for interacting with remote



peers. The communication is encrypted using the Cipher
component of our system.

5 Related Work
With the raise of filesharing systems like Napster or
Gnutella [2] the database community started to seriously
adopt the idea of P2P systems to the formerly known loosely
coupled database systems. Contrary to the data grid, P2P
database systems do not have a global control in form of a
global registry, global services, or a global resource man-
agement, but multiple databases with overlapping and in-
consistent data. These P2P databases resemble heteroge-
neous and distributed databases, also known as multidata-
bases [4]. Currently the database community makes a great
effort in investigating P2P databases. Particularly the Pi-
azza [5] project is worth mentioning, where a P2P system
is built up with the techniques of the Semantic Web with
local point–to–point data translations, rather than mapping
to common mediated schemas or ontologies. Contrary to
Halevy et al., we deal mainly with relational data and do
not have a global schema, as every peer may have its own
import–/export–schema combination. For a more general
glimpse on data mappings in P2P systems see [7].
Our strategy allows data to be exchanged among distributed
databases connected through a lazy network. This means,
that although a running network may not be guaranteed and
thus some data broadcasts may be lost, the system is able to
heal itself. In contrast to the broadcast disks [1], we ensure
that data is only broadcasted to the clients when changes oc-
cur, unless the communication between both peers crashes.
Hence our approach resembles a push–based system with a
pull–based fallback, similar to [1] with the major difference
that our approach is not based on broadcast disks, but on a
push–based replication strategy.

6 Conclusion and Future Work
In this paper we presented the D ÍGAME architecture, which
connects heterogeneous and autonomous data sources creat-
ing a dynamic information grid. This architecture enhances
the well-known multidatabase architecture with P2P con-
cepts, in order to support dynamic intra- and inter-enterprise
collaboration. Local administrators decide themselves on
their level of participation. Data provided by other peers
can be subscribed and integrated into the local database as
needed. The data source actively propagates changes on the
subscribed data and schema items to the relevant peers via
a standardized exchange format resulting in a replication of
the data. Peers participating in the data grid interact pair-
wise without being managed by any central authority.
Further steps include the refinement of the prototype. In
addition, we have to examine the impact of D ÍGAME on
the network traffic, particularly concerning query intensive
applications.
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