
Maintaining Global Integrity in
Federated Relational Databases using

Interactive Component Systems

Christopher Popfinger and Stefan Conrad

Institute of Computer Science
University of Düsseldorf

D-40225 Düsseldorf, Germany
{popfinger, conrad}@cs.uni-duesseldorf.de

Abstract. The maintenance of global integrity constraints in database
federations is still a challenge since traditional integrity constraint man-
agement techniques cannot be applied to such a distributed manage-
ment of data. In this paper we present a concept of global integrity
maintenance by migrating the concepts of active database systems to
a collection of interoperable relational databases. We introduce Active
Component Systems which are able to interact with each other using
direct connections established from within their database management
systems. Global integrity constraints are decomposed into sets of partial
integrity constraints, which are enforced directly by the affected Active
Component Systems without the need of a global component.

1 Introduction

Many organizations or companies own a multitude of data sources, which gener-
ally emerged autonomously to fit the needs of a department or a certain group
of users at a local site. Local applications produce or modify data that is often
semantically related to data stored on a different autonomous source. One of the
main challenges in the integration of data in such environments is the auton-
omy of the data sources. This autonomy implies the ability to choose its own
database design and operational behavior. Local autonomy is tightly attached
to the data ownership, i.e. who is responsible for the correctness, availability,
and consistency of the shared data. Centralizing data means to limit local au-
tonomy and revoke the responsibility from the local administrator, which is not
reasonable in many cases. A federated architecture for decentralizing data has
to balance both, the highest possible local autonomy and a reasonable degree of
information sharing [1]. Hence, the architecture of a company wide information
system has to be applicable to the data policy of the company and vice versa.
To be more precise, the question of data ownership determines the composition
of the company wide information platform, while it has to ensure a high level of
consistency and fail-safety.

In many scenarios, local data is, and should be, exclusively manipulated by
local applications, whereas global applications are used to display and analyze

this data without the need for global write transactions. For example, a com-
pany could store employee data in a database of the management department,
whereas the research department maintains information about ongoing projects
and researchers in its own database. Each department is responsible for the
up-to-dateness and correctness of its data. Information about employees and
research projects shall be integrated and displayed on the company’s website.
Obviously the data in both autonomous databases is interrelated, since all the
researchers are employees of the company. Thus, we need to ensure that every
entry in the research database has a corresponding entry in the management
database. Interdependencies of data stored on multiple databases can be con-
sidered as integrity constraints expressed over a global schema that is derived
from relevant schemata of the local databases. The maintenance of these global
integrity constraints is still a problem since traditional integrity constraint man-
agement techniques cannot be applied to such a distributed management of data.
Our work is developed in the context of relational databases, since this type of
data source is widely used for data storage in practice. We assume an information
system which comprises a collection of autonomous relational sources of various
vendors running on different platforms. The databases store interdependent data
that is accessed by local and global applications.

In this paper we present a concept for global integrity maintenance in such
a federated relational database systems by extending the concepts of active
database systems to a collection of interoperable relational databases. We intro-
duce Active Component Database Systems (ACDBS), which are able to interact
with each other using direct database connections established from within their
database management systems. Interdependencies between the data sources are
expressed as global integrity constraints and enforced using constraint checks
that are entirely implemented on the ACDBSs without the need of a global com-
ponent or federation layer. At the same time, we allow the component database
systems to retain the greatest possible extent of local autonomy.

The remainder of the paper is organized as follows. We start with an in-
troduction to Active Component Database Systems as the main components of
our architecture in section 2. Section 3 defines partial integrity constraints as a
new type of constraints suitable for ACDBS, followed by a detailed explanation
of global integrity checking based on partial integrity constraints in section 4.
Section 5 discusses properties of our concepts, while related work is presented in
section 6. Section 7 concludes and draws up future work.

2 Active Component Database Systems

We start with an introduction to Active Component Database Systems (ACDBS)
as the main concepts of our approach. An ACDBS is an autonomous component
database system or component system (CDBS or CS) of a federated database
system as described in [2]. The active functionality of this kind of component
systems, which we are going to describe in the following, can be used to ensure
consistency and to enforce business rules in both, tightly coupled and loosely

coupled federations. Within the classical notion of federated databases, the com-
ponent systems do only have passive functionality regarding the federation. Like
repositories, they provide access to their data and respond to data requests ini-
tiated by the clients. Such passive component database systems, with respect to
the federation, operate isolated and do not have any knowledge of other CDBSs
within the federation to which their data is related.

Active database systems, which are not automatically ACDBSs when partic-
ipating in a federation, assist applications by migrating reactive behavior from
the application to the DBMS. They are able to observe special requirements of
applications and react in a convenient way if necessary to preserve data con-
sistency and integrity. The integration of active behavior in relational database
systems is not particularly new and most commercial database systems support
ECA rules, whereas the execution of triggers is mainly activated by operations
on the structure of the database (e.g. insert or update a tuple) than by user-
defined operations [3]. Unfortunately, the ability to check constraints in active
databases, especially the scope of trigger conditions and actions, has until re-
cently been limited to the isolated databases they were defined at. Subsequent
developments integrated special purpose programming languages (e.g. PL/SQL
[4]) into the database management system to overcome some limitations of the
query language and to provide a more complex programming solution for critical
applications. But again, the scope of these extensions was strictly limited to the
system borders of the database system, so an interaction with its environment
was impossible. Thus, the support of ECA rules and triggers is necessary, but
not sufficient for the concept we propose here.

Latest developments, especially in commercial database systems, take the
functionality of active databases beyond former limits. The significant improve-
ment, on which this work is based on, is the ability of modern active database
systems to execute programs written in a standalone programming language
from within triggers, user defined functions, or stored procedures.

Definition 1. The ability of a database system to execute programs or methods
from within its DBMS to interact with software or hardware components beyond
its system border shall be called enhanced activity. A database with enhanced
activity is an Enhanced Active Database System (EADBS). The execution of
a program or method in this context shall be called an External Program Call
(EPC).

The execution of external programs (EPs) from inside the DBMS offers new
perspectives to data management and processing in an information sharing en-
vironment. Besides the maintenance of global integrity constraints as presented
here, it can be used to improve communication with other external components
like database wrappers [5]. In this paper, we use the database connectivity of
the programming language to add the following functionalities to a component
database system of a federation:

Query the state of a remote database: The main functionality which is el-
ementary for our approach is the ability of an CDBS to query a remote data

source directly during the execution of a database trigger. After a connection
has been established by the EP, we can perform any read operation on the
remote schema items we are allowed to access. Depending on the query lan-
guage we can formulate complex queries with group and aggregate functions
(e.g. like in SQL). The query result of the remote database is used locally to
evaluate conditions of ECA rules. We call this kind of query a remote state
query.

Manipulating a remote database: After a connection is set up by the pro-
gram, a CDBS is basically able to modify the data stock of the remote
database directly during the execution of a database trigger. Assuming the
appropriate permissions, any operation supported by the query language can
be executed including data insertions, updates, and deletions. Depending on
the query language, a CDBS is thus basically able to modify even the schema
of a remote database using for example ALTER TABLE statements in SQL. In
the following, a manipulation of remote data or schema items from within
a database trigger shall be called an injected transaction, since its execution
depends on a triggering transaction on a local relation.

The programming language used for EPs has to provide the functionality to
open and close a connection to a remote data source and execute queries upon
that data stock. Furthermore, we must be able to pass parameters to the EP
and to access the corresponding program output from inside the trigger. This
output can be used to evaluate trigger conditions or to determine subsequent
trigger actions. Since the EPCs are embedded straight inside the DBMS of the
local system, we are able to delay or abort transactions depending on the state
of another data source or the result of an injected transaction. Just like common
triggers that exclusively use local data to evaluate their trigger conditions, the
DBMS autonomously schedules the execution of the trigger that encapsulates
the EP. In particular, we do not force a component system to provide an atomic
commitment protocol like 2PC. From the point of view of the remote database,
a query of another DBMS via the database server is handled like a request of an
ordinary application.

Within recent commercial database systems a commonly supported program-
ming language which meets the requirements just mentioned is Java (e.g. Java
Stored Procedures or Java UDFs [6,4]). It contains JDBC, a common database
connectivity framework, to provide a standardized interface for a multitude of
different data sources like relational databases or even flat files. During the exe-
cution of an EP based on Java, we use JDBC to connect to remote data sources
from within triggers. After a connection has been established, we execute queries
using SQL as a standardized query language. Our concept can be adapted to
other relational database systems supporting different programming languages
that fulfill the requirements listed above.

Definition 2. An Active Component Database System (ACDBS) is an
EADBS, which actively participates in maintaining global integrity constraints in
a federation. It is able to directly communicate with other component systems,

to which its data is semantically related, and implements constraint checks to
maintain consistency among this interdependent data.

Constraint checks performed by ACDBSs are entirely implemented and executed
on local CDBSs, but require access to remote data. Since these checks cannot
be expressed by either local or global constraints, we introduce partial integrity
constraints as a new type of integrity constraints for ACDBS.

3 Partial Integrity Constraints

In this section, we discuss partial integrity constraints as the basic concept of our
approach. As already mentioned, we assume a federation of relational databases.
Each ACDBS in this federation has to meet two requirements concerning the pro-
gramming language for encoding EPs: (1) It must be able to connect to other
component systems of the federation using the database connectivity of the pro-
gramming language and (2) it must support a query language understood by
the other component systems to execute at least read operations on the remote
data stock. In practice, two widely used standard database connectivity inter-
faces are JDBC and ODBC, which support a multitude of relational databases.
An established query language for relational databases certainly is SQL. This
enhanced functionality is used to implement constraint checking algorithms for
partial integrity constraints, which are defined next.

3.1 Definition of Partial Integrity Constraints

We start with the following definitions similar to [7]:

Definition 3. A federation F of relational component systems is a set of n
interconnected database systems {S1, ..Sn}. The database systems do not nec-
essarily have to be located on physically different nodes of the network. Each
system Si ∈ F manages a local database Di. A local schema Di of a database
Di comprises the schemata Ri

1, ...Ri
ni

of the relations Ri
1, ..., R

i
ni

stored in the
database. The global database schema G of F is the set of all relational schemata
Ri

j in F .

We assume that a real-world object, that is modeled in a component database
of F , is globally identified by a set of key attributes, i.e. a real-world object will
have the same key attribute values when stored in different CDBSs. Otherwise
we assume mapping functions to match real-world objects in different sources.

Definition 4. A local integrity constraint IDi

L is a boolean function over a local
database schema Di, i.e. IDi

L : Di → {true, false}. A global integrity constraint
IG is a boolean function over the global schema G, i.e. IG : G → {true, false}.
It cannot be expressed over a local database schema Di ∈ G. Constraint checks
for IDi

L and IG are algorithms for evaluating IDi

L and IG respectively.

After a global constraint IG has been defined over G, we identify a non-empty
set C ⊆ F of component databases c ∈ C whose local schemata Rc are affected
by IG, i.e. data stored in the relations Rc on the component databases is se-
mantically related. Thus, from the point of view of each component database c,
IG affects a relation managed locally and at least one remote relation managed
by another component system. For example, if a key constraint is defined on a
global attribute that is derived from multiple sources, each of the sources has to
ensure the global uniqueness of the key attribute, when a new tuple is inserted
locally. This means that IG consists of a set of partial integrity constraints, which
we define as follows:

Definition 5. A partial integrity constraint IRc
on an ACDBS c ∈ C is

a boolean function, which is expressed over the local schema Rc and related
schemata Rku

for ku ∈ C \ {c}, i.e. IRc
: Rc ×Rk1 × · · · ×Rkv

→ {true, false}
for v ≤ |C| − 1. A constraint check for IRc is an algorithm for evaluating IRc ,
which is entirely implemented on c using external program calls to access the
remote schemata Rku

.

A partial integrity constraint consists of a local constraint check and one or
more remote constraint checks on interrelated remote data, depending on the
type of global constraint and the number of affected databases. It is used to
express a global constraint from the local view of a single component database.
An ACDBS, which implements a partial integrity constraint, has to ensure con-
sistency of its local data depending on related data stored in other component
databases. This means that it is responsible for checking a specific part of the cor-
responding global integrity constraint concerning local write operations on the
interrelated data. Thus, a global integrity constraint is assured, iff all affected
component systems enforce their corresponding partial integrity constraints, ex-
pressed as

IG :
∧
c∈C

IRc

The global constraint IG consists of a conjunction of partial integrity constraints
IRc

, which are formulated as

IRc
: localRc

∧
∧

j∈C′

remoteRc,Rj

Depending on the type of global integrity constraint, each affected ACDBS c has
to check an optional local condition localRc

and one or more remote conditions.
remoteRc,Rj

defines a pairwise dependency between the affected local relation
Rc and one interrelated relation Rj on component j. Remote conditions do
not necessarily have to be defined for each pair of local and remote databases
in C. Thus, C′ ⊆ C \ {c} denotes a subset of ACDBSs, which are required to
check for a specific integrity constraint. A constraint check for IRc

implements
tests for the local condition localRc

and each remote condition remoteRc,Rj
.

For aggregate constraints, a test for a local or remote condition results in the
successful computation of a local or remote aggregate. Detailed examples for
partial constraint checks are provided in section 4.

3.2 Specification of Partial Integrity Constraints as ECA Rules

Since our concept of global integrity maintenance is based on ACDBS with
enhanced activity, we use database rules following the event-condition-action
(ECA) paradigm to specify a partial integrity constraint IRc

on a component
database c as follows:

define rule PartialIntegrityRule IRc

on event which modifies Rc

if a test for localRc
yields false or

a test for remoteRc,Rj yields false
do local and/or remote action(s) to ensure or

restore a consistent global state

Such integrity rules can precisely define both: events that potentially violate the
integrity of local and remote data, and corresponding reactions on these events to
ensure or restore consistency in the entire system. The relevant events concerning
data consistency are modifications of the data stock, i.e. insertions, updates, and
deletions. According to the definition of partial constraints, each rule condition
and rule action of a partial integrity rule can consist of a local and one or more
remote checks. The local check localRc

exclusively uses and accesses local data,
while the remote checks remoteRc,Rj

exclusively process data stored on remote
systems. The remote checks of a partial integrity rule are implemented using
remote state queries (or injected transactions) provided by the ACDBS. Thus,
we have the following options to call an external program during an integrity
check:

During the evaluation of a trigger condition: An external program call
during the evaluation of a trigger condition allows a DBMS to determine
subsequent actions depending on the result of a remote state query or the
result of an injected transaction. Thus, a locally executed constraint check
can be conditioned by the state and behavior of a remote data source. In
our concept, most of the constraint checks are implemented using remote
state queries from within trigger conditions. The part of the trigger condi-
tion, which evaluates a condition using remote data shall be called remote
condition.

During the execution of (a) trigger action(s): Besides the remote condi-
tion, an external program can be executed as a trigger action. A local trans-
action can thus trigger an injected transaction to manipulate a remote data
source. This can be used to execute consistency restoration actions or to im-
plement special constraints like cascading referential integrity. This part of
the trigger action, which manipulates remote data using injected transaction
shall be called remote action.

The specific combination of the time the corresponding EP is executed (i.e.
during remote condition or remote action) and the time a partial integrity rule
is evaluated (i.e. before or after a local transaction is committed) is significantly

affecting the behavior of the entire system. Please note, that we are certainly
not limited to exclusively one of these combinations. During the evaluation of
a partial integrity rule, external programs can be called from both, the remote
condition and the remote action, before or after a local transaction is committed.

Fig. 1. Basic Architecture

Putting it all together, we present the architecture for global integrity check-
ing in heterogeneous information systems using active component systems de-
picted in Fig. 1. The partial integrity checks are defined and implemented directly
in the ACDBSs, building up an application independent communication layer to
jointly ensure global consistency of interdependent data. The ACDBSs call EPs
to check remote conditions or to execute remote actions of locally defined partial
integrity constraints. Each transaction is checked according to local and partial
integrity constraints, no matter if submitted by local or global applications. The
maintenance of global integrity is thus migrated from a global application or
federation layer to the underlaying active component systems.

3.3 System Interaction

We now give a schematic description of the interaction process between two
ACDBSs during the execution of a partial integrity check. Consider two rela-
tions R and S on active component systems ACDBS1 and ACDBS2, which
store interdependent data. To enforce a global constraint, we have to define and
implement partial constraint checks on both component systems. Therefore we
create the following objects on each ACDBS (see Fig. 2):

– An external program (EP) (here a Java method) to execute queries upon
the remote data stock,

– a user defined function (UDF), which is mapped to the external Java
method, and

– a trigger which executes the UDF when relevant write operations occur on
the relation.

Fig. 2. Interaction between two Active Component Systems

We assume a global key constraint to be enforced on R and S, i.e. whenever a
tuple is inserted or modified in R or S, we have to check the global uniqueness of
the key attributes of the newly inserted or modified tuple in both relations. Our
description focuses on data modifications in R, since modifications in S would
be processed analogously. When an application inserts or updates data items
∆R in R, the corresponding trigger is executed by the database system before
the transaction is completed. The trigger has access to ∆R via temporary tables
provided by the DBMS. For each new tuple r in ∆R, the trigger first performs
a check on the local data and afterwards, if necessary, on the remote data. If
the local test fails, the key constraint is already violated and the remote test is
omitted. If the local test succeeds, the trigger calls a UDF to check for conflicts
in the remote data. The UDF is mapped to a Java function and receives r as a
parameter from the trigger.

The Java function now bridges the gap between the two component systems.
Using JDBC it connects to the remote database and executes an SQL query to
check for the existence of r in S. The function returns true or false depending
on the query result. The trigger receives this result and is now able to determine
subsequent actions. Please keep in mind that, for the scope of this paper, we
execute local and remote checks during the evaluation of the trigger condition
before the transaction is completed. Thus, the transaction is blocked as long as
the trigger is executed. If a corresponding tuple already exists in S, then we
reject the data modifications on R. An SQL error is raised to signal the global
key constraint violation.

4 Checking Global Integrity Constraints

We now concretize our concept of global integrity maintenance explaining how
partial integrity constraints are expressed and implemented for different con-

straint types. Therefore we use a simplified scenario with two relational data
sources. A generalization to more than two sites is discussed in section 5.

Consider a company with two research departments A and B, which both
manage their own autonomous relational database DBA and DBB . The company
wants to integrate these standalone sources into an information system and
define integrity constraints to ensure global data consistency within the entire
company. We assume that the sources are relational databases with enhanced
activity, which host the relations shown in Table 1. Each department stores
information about researchers in relation res (researcher number R, name N ,
salary S) and their corresponding projects in relation proj (project number P ,
title T , budget B). Researchers are related to projects using the prores relation
(m:n).

Department Database Relations
A DBA resA(RA, NA, SA)

projA(PA, TA, BA)
proresA(RA, PA)

B DBB resB(RB , NB , SB)
projB(PB , TB , BB)
proresB(RB , PB)

Table 1. Example relations in the research departments A and B

According to the classification presented in [8,9], we consider four commonly
used classes of global integrity constraints which can be defined on the global
schema: attribute constraints, key constraints, referential integrity constraints,
and aggregate constraints. In the following, we provide an example for each
non-trivial class of global integrity constraints, followed by a rule definition for
corresponding partial integrity constraint on the affected ACDBSs.

4.1 Attribute Constraints

The company could define a constraint saying that the budget of each project
may not exceed a certain value. Since this global attribute constraint is expressed
over a single attribute, it can be translated into a local attribute constraint and
thus be enforced by local integrity mechanisms on DBA and DBB , e.g. by an
additional check clause in both project relations. The global constraint can be
enforced by a local constraint check on each ACDBS, so no EPCs are required.

4.2 Key Constraints

The company may want to ensure that each project is globally identified by a
unique identifier, i.e. the values stored in PA and PB are globally unique. Thus,
each time a project is added in one of the research departments, we have to
ensure that the new project number does not already exist locally and in the
project database of the other research department.

Since partial constraint checks are entirely implemented on a participating
ACDBS using EPCs to access remote data, we decompose KeyG into a set of
partial integrity constraints KeyprojA and KeyprojB for DBA and DBB respec-
tively:

KeyG : KeyprojA ∧KeyprojB

The partial constraints are in turn formulated as

KeyprojA : localprojA ∧ remoteprojA,projB

KeyprojB : localprojB ∧ remoteprojA,projB

A partial constraint consist of a local condition and a remote condition, which
are defined for KeyprojA as follows (KeyprojB is defined analogously):

localprojA : ∀P, T,B, P ′, T ′, B′ :
[projA(P, T,B) ∧ projA(P ′, T ′, B′) ⇒ ¬(P = P ′)]

remoteprojA,projB : ∀P, T,B, P ′, T ′, B′ :
[projA(P, T,B) ∧ projB(P ′, T ′, B′) ⇒ ¬(P = P ′)]

Suppose the tuple projA(p, t, b) is inserted. According to KeyprojA we have to
check the existence of the key locally and in projB, stored on DBB , with the
following tests for localprojA and remoteprojA,projB :

localtestKeyprojA
:6 ∃P, T,B : [projA(P, T,B) ∧ (P = p)]

remotetestKeyprojA
:6 ∃P, T,B : [projB(P, T,B) ∧ (P = p)]

Both tests are evaluated by performing queries on the relevant relations for a
tuple that has p as its project number. Therefore, we need two boolean func-
tions: checklocalkey : schema(projA) → {true, false} for localtestKeyprojA

and checkremotekey : schema(projB) → {true, false} for remotetestKeyprojA
.

checklocalkey should always be evaluated first to avoid cost-intensive remote
data access where possible. Please note that although the uniqueness of key at-
tributes may already be enforced by an additional local key constraint, we need
the local check in the partial constraint since in general it is not possible to
access the result from a local constraint check from within an active component
like a trigger.

The checkremotekey function is implemented using a remote state query,
which queries database DBB to find tuples with the values to be inserted. If
the query result is not empty or the remote source is not reachable by the
external program, then the function is evaluated to false, i.e. the corresponding
transaction in database DBA is rejected. The condition is evaluated before the
triggering operation is committed at DBA. The corresponding partial rule for
KeyprojA is expressed as:

define rule PartialKeyConstraint
on creation of a new object in projA
if checklocalkey yields false or checkremotekey yields false
do reject transaction

A partial constraint is herewith realized on an ACDBS with an implementation
of the ECA rule using two functions checklocalkey and checkremotekey with
one remote state query. Having implemented both partial constraints KeyprojA

and KeyprojB on both systems, we are able to verify KeyG each time a modifying
transaction is committed locally on DBA and DBB .

4.3 Referential Integrity Constraints

A widely spread constraint is the definition of referential integrity on relations
to specify existence dependencies between two database objects. Referring to
our scenario, the company could allow researchers of department A to cooperate
on shared projects of department B. Thus, we have to ensure that a researcher
in DBA is related to an existing project in DBB and vice versa. As already
mentioned, researchers are related to projects via the prores relation referencing
the relevant primary keys of the local project and researcher relations. Now,
to reflect the global referential integrity constraint in our exemplary relational
model, we allow RB in proresB to reference both, local researchers using RB in
resB and cooperating researchers in resA using RA. In the scope of this paper
we only consider referential integrity without cascading, although our concept
of ACDBSs basically supports cascading. An outlook on cascading referential
integrity can be found later in this section.

Referential Integrity Without Cascading In the following, we focus on
the referential integrity concerning the researcher number RB in proresB. Ref-
erential integrity for PB in proresB is handled analogously. Similar to global
key constraints, a global referential constraint is first decomposed into a set of
partial constraints:

RefIntG : RefIntresA ∧RefIntproresB

The existence dependency between the local parent relation resA and the local
dependent relation proresA can be expressed as follows:

localproresA : ∀R,P∃R′, N, S :
[proresA(R,P) ∧ (R = R′) ⇒ resA(R′, N, S)]

Furthermore we formulate a remote constraint remoteproresB,resA as

remoteproresB,resA : ∀R,P∃R′, N, S :
[proresB(R,P) ∧ (R = R′) ⇒ resA(R′, N, S) ∨ resB(R′, N, S)]

Using these definitions, we express the partial constraints for RefIntG as

RefIntresA : localproresA ∧ remoteproresB,resA

RefIntproresB : remoteproresB,resA

A project can only be inserted into proresB, if a corresponding researcher exists
in either resB (locally) or resA (remote). Contrary, a researcher in the parent
relations resA and resB may not be deleted, as long as depending projects exist
in the dependent relation proresB. Thus, we have to distinguish between con-
straint checks for insertions and deletions on the dependent and parent relations
respectively.

Insertion check: Suppose the tuple proresB(r, p) is inserted, whereas p refers
to an existing project in projB. According to RefIntproresB we have to
check the existence of r locally and remote using the following tests for
remoteproresB,resA:

localtestRefIntproresB
: ∃R,N, S : [resB(R,N, S) ∧ (R = r)]

remotetestRefIntproresB
: ∃R,N, S : [resA(R,N, S) ∧ (R = r)]

If one of the tests yields true, then there exists a corresponding entry in
either the local or remote parent relation and the tuple proresB(r, p) can be
inserted. Otherwise the insertion has to be rejected. For the implementation
of these tests, we use the functions checklocalkey and checkremotekey as
introduced in section 4.2. The remote test is evaluated using a remote state
query on DBA. A corresponding ECA rule for this partial constraint can be
expressed as follows:

define rule PartialReferentialConstraint
on creation of a new object in proresB
if checklocalkey yields false and checkremotekey yields false
do reject transaction

Deletion check: Suppose the tuple resA(r,n,s) shall be deleted from DBA. Ac-
cording to RefIntresA we have to ensure that there are no depending objects
in the prores relations on DBA and DBB before we delete this item. Thus,
we formulate the following tests for localproresA and remoteresA,proresB :

localtestRefIntresA
:6 ∃R,P : [proresA(R,P) ∧ (R = r)]

remotetestRefIntresA
:6 ∃R,P : [proresB(R,P) ∧ (R = r)]

The deletion check succeeds, i.e. resA(r, n, s) can be deleted, if there are
no dependent objects in proresA and proresB. This partial constraint is
represented by the following ECA rule:

define rule PartialReferentialConstraint
on deletion of an object in resA
if checklocalkey yields true or checkremotekey yields true
do reject transaction

Of course, we have to ensure that an entry in the parent table exists either in
resA or resB. This is realized using a key constraint on the researcher id as
presented in section 4.2.

Cascading Referential Integrity Constraints With the extended function-
ality of Active Component Systems, we are basically able to realize cascading
referential integrity on updates or deletions of tuples. Injected transactions can
be executed during the evaluation of a partial integrity constraint to modify
remote data stocks including even deletions, before or after the modifying oper-
ation is committed locally. If a tuple is deleted in the parent relation, we execute
an injected transaction to delete all corresponding tuples in the dependent re-
lation. Analogously, if a key value is updated in the parent relation, we cascade
this update to the dependent relation by modifying the relevant entries in the
remote database via injected transactions.

The corresponding partial integrity constraint for the parent relation is ex-
pressed similar to the partial rule without cascading presented in 4.3. We extend
the rule to delete dependent objects from within the rule condition or action de-
pending on the intended system behavior. Thus, we are able to delete entries in
the dependent relation from within a remote condition or a remote action, before
or after the local entry is deleted. Of course, since we modify data on more than
one autonomous database system, we face the problem of atomic commitment
in a multidatabase environment [10]. A distributed update may lead the federa-
tion into a (temporary) inconsistent state in case of a failure. We therefore need
a recovery mechanism based on the concept proposed to detect inconsistencies
and restore global integrity automatically after a transaction has violated global
constraints. Following the line of argumentation in [11] we consider weakened
notions of consistency, using guarantees for the level of consistency a system can
provide. The integration of weakened consistency into our architecture is part of
future work.

4.4 Aggregated Constraints

As a representative for this type of constraint let us assume that the company
has a budget limit for all research projects. Thus, it must be checked whenever
a project is created or updated in DBA and DBB that the sum of all project
budgets BA and BB does not exceed a certain value ε. We restrict our further
considerations on the standard aggregate functions min, max, sum, and count.
The average function avg must be calculated during a partial constraint check
using sum and count. Furthermore, we assume that agg(T,w) is an aggregate
function that calculates the aggregate of an attribute w of a relation T . The
function totalagg(agg(Rm1 , wm1), ..., agg(Rms

, wms
)) computes the overall ag-

gregate of partial aggregates for mu ∈ C and s = |C|. Please note that count is
a semi additive aggregate function and the overall aggregate must be calculated
as the sum of partial count aggregates.

These preliminaries provided, we can now formulate a global aggregated con-
straint for our example as

SumG : SumprojA ∧ SumprojB

with the partial constraints defined as

SumprojA : totalsum(localsumprojA, remotesumprojB) ≤ ε

SumprojB : totalsum(localsumprojB , remotesumprojA) ≤ ε

Both databases have to check the total sum whenever an insertion or update
occurs on BA or BB . Therefore, DBA calculates its corresponding local and
remote aggregate as

localsumprojA = sum(projA,BA) and remotesumprojB = sum(projB, BB)

using two functions agglocal : schema(projA) → R and aggremote :
schema(projB) → R. The calculation of the remote aggregate is realized using a
remote state query on DBB . The aggregates for DBB are calculated analogously.

Now suppose the tuple projA(p, t, b) is inserted. According to SumprojA we
first compute localsumprojA including the new value b and remotesumprojB on
DBB . After we receive the result from the remote aggregation, we calculate
totalsum and compare the overall aggregate to ε. If the comparison yields false
then the insertion of projA(p, t, b) is rejected. A corresponding ECA rule for this
partial constraint can be expressed as:

define rule PartialAggregatedConstraint
on update of BA in projA or insertion of a new object in projA

if totalsum(localsumprojA, remotesumprojB) > ε
do reject transaction

5 Discussion

The checking mechanism presented in this paper is basically an implementation
of the Local Test Transaction Protocol (LTT) presented by Grefen and Widom
in [7]. The LTT exploits transaction capabilities provided by the local database
system to perform a notification and wait for acknowledgment within a single
transaction. Using the LTT we try to avoid remote checks by evaluating local
tests first. If a local test has already failed, then we do not have to evaluate the
cost intensive remote check using remote state queries. The implementation of
a transaction-based protocol like LTT has to evaluate a constraint check before
the triggering operation is committed. The external program is executed as part
of the remote condition of a partial integrity rule. Our implementation certainly
adopts all advantages and drawbacks of the applied LTT protocol. Thus, the
implementation proposed is safe and accurate, which means that it detects all
constraint violations and that, whenever an alarm is raised, there is a state in
which the constraint is violated. On the other hand, since the relation is locked
until the external program returns a result, the local ACDBS looses autonomy
and the risk of deadlocks is relatively high, if relations in DBR and DBS are
updated concurrently.

Due to the flexibility of our architecture, we are basically able to implement
the entire set of protocols described by Grefen et al.Ṫhus, to overcome the draw-
backs of the LTT, we can modify the partial integrity constraints to implement

the Materialized Delta Set Protocol (MDS), which increases autonomy and re-
duces the risk of deadlocks. Therefore, we maintain an additional relation ∆R,
which stores an accumulated set of updates of the original relation R. The con-
straint checking mechanism is then evaluated using ∆R instead, so the original
relation is not locked during the check. This enables at least concurrent read
access to R while updates must still be delayed until the lock is released. In our
architecture ∆R is maintained using the active capabilities of the DBMS. We
define a local rule on R to copy all updated items to ∆R. The partial integrity
rule including the remote checks as presented above is then expressed over the
Materialized Delta Set ∆R.

A generalization of the constraint checking mechanism to more than two sites
is tightly corresponding to the implemented integrity checking protocols. As al-
ready described in [7], most of the constraints that involve more than one site
can be decomposed into a couple of constraints, which are expressed over exactly
two databases. If there is the need for multi-site constraints, the authors pro-
pose to use non-transaction-based protocols like Direct Remote Query (DRQ) or
Timestamped Remote Query Protocol (TRQ), which can both be implemented
using our architecture. To avoid locking of the updated relation we adjust the
partial integrity rule to be evaluated after the modifying operation is committed.

The protocols could be optimized according to the Demarcation Protocol
presented in [12]. This protocol is particularly suitable for arithmetic constraints
like aggregated constraints, but can also be used for key or referential integrity
constraints. The Demarcation Protocol can be seen as an extension to the LTT
and thus be implemented using our architecture.

6 Related Work

In the last years, research on integrity constraints in heterogeneous environments
mainly considered the simplification, evolution, or reformulation of constraints
rather then mechanisms or protocols for integrity checking. A closely related
concept in terms of the rule structure and constraint types is presented in [9].
The authors use private and public global constraints to define dependencies
between data in different databases, similar to the partial constraints presented
in this paper. One of the main differences is the use of a layered approach to
support the active functionality required for event detection and rule process-
ing. A reactive middleware based on CORBA encapsulates active and passive
sources and processes rules using an external remote rule processing mechanism.
Furthermore every component is assumed to have an Update Processor to ex-
ecute local update requests, but the local relation cannot be locked during the
evaluation of remote conditions.

The metadatabase approach [13] uses a rule-oriented programming environ-
ment to implement knowledge of information interactions among several subsys-
tems. Each subsystem is encapsulated by a software shell, which is responsible
for monitoring significant events, executing corresponding rules, and interacting

with other shells. Although conditions can be evaluated in a distributed way,
the rule processing itself is still centralized.

A distributed rule mechanism for multidatabases is presented in [14] as part
of the Hyperion project. A distributed ECA rule language is introduced, which is
mainly used to replicate relevant data among data peers in a push-based fashion.
Rules are processed by a rule management system that resides in the P2P layer
on top of a peer database. The X2TS prototype [15] integrates a notification and
transaction service into CORBA using a flexible event-action model. The archi-
tecture presented resembles a publish/subscribe system, whereas publishing of
events is non-blocking. Another middleware approach for distributed events in a
heterogeneous environment is presented in [16]. CORBA-based, distributed, and
heterogeneous systems are enhanced by Active DBMS-style active functionality.
The architecture uses wrappers with event monitors to detect data modifications
in the data source.

A common characteristic of the architectures just mentioned is the use of a
layered approach with event monitoring to somehow notify a mediating com-
ponent (e.g. a constraint manager, rule processor, or middleware component)
about events occurring in the local database. If the source is not monitored, the
notification mechanism is generally based on active capabilities of the underlay-
ing database management system, but there is so far no detailed description of
this interaction published.

The most distinctive characteristic of our concept is the direct usage of exist-
ing active capabilities of modern database management systems without the need
for wrappers or monitoring components. Since a remote condition is evaluated
during the execution of a trigger, it is irrelevant if the triggering transaction
was a global or local update. We benefit from the active functionality of the
DBMS in terms of transaction scheduling, locking, and atomicity, resulting in
a synchronous integrity checking mechanism. Especially the ability to rollback
updates depending on a remote state query makes corrective or compensative
actions basically superfluous.

7 Conclusion and Future Work

We have presented an architecture for global integrity maintenance in a fed-
erated relational database using component database systems with enhanced
active functionality. We introduced Active Component Database Systems which
are able to communicate with other component databases to which their data is
semantically related to. They are no longer just passive data providers but ac-
tively participating in global integrity maintenance. Global integrity constraints
are composed of sets of partial integrity constraints for each component system
that is affected by the constraint. The partial constraints are evaluated using
local and remote checks which are implemented entirely on a local site. We
have described the requirements and basic functionality of our architecture and
provided examples for partial constraints for commonly used classes of global
constraints.

In the next steps we address the problem of distributed updates using injected
transactions as needed for cascading referential integrity or data replication.
Furthermore, we plan to deal with the detection, resolution, and prevention
of deadlocks and examine the system behavior depending on the time a rule is
evaluated and an external program is called. The architecture shall be elaborated
in a true loosely coupled environment to evaluate execution costs and scalability.

References

1. Heimbigner, D., McLeod, D.: A Federated Architecture for Information Manage-
ment. ACM Transactions on Information Systems (TOIS) 3 (1985) 253–278

2. Sheth, A.P., Larson, J.A.: Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys 22 (1990)
183–236

3. Paton, N.W., Dı́az, O.: Active database systems. ACM Computing Surveys
(CSUR) 31 (1999) 63–103

4. Loney, K., Koch, G.: Oracle8i: The Complete Reference. Osborne/McGraw-Hill
(2000)

5. Popfinger, C., Conrad, S.: Tightly-coupled Wrappers with Event Detection Sub-
system for Heterogeneous Information Systems. In: DEXA Workshop Proceedings,
IEEE Computer Society Press (2005) to appear.

6. Chamberlin, D.: A Complete Guide to DB2 Universal Database. Morgan Kauf-
mann (1998)

7. Grefen, P.W.P.J., Widom, J.: Integrity Constraint Checking in Federated
Databases. In: Conference on Cooperative Information Systems, IEEE Computer
Society Press (1996) 38–47

8. Türker, C., Conrad, S.: Towards Maintaining Integrity of Federated Databases.
In: Data Management Systems, Proc. of the 3rd Int. Workshop on Information
Technology, IEEE Computer Society Press (1997) 93–100

9. Gomez, L.G.: An Active Approach to Constraint Maintenance In A Multidatabase
Environment. PhD thesis, Arizona State University (2002)

10. Mullen, J.G., Elmagarmid, A.K., Kim, W., Sharif-Askary, J.: On the Impossibility
of Atomic Commitment in Multidatabase Systems. In: Proc. of the 2nd Int. Conf.
on System Integration, IEEE Computer Society Press (1992) 625–634

11. Chawathe, S., Garcia-Molina, H., Widom, J.: A Toolkit For Constraint Manage-
ment In Heterogeneous Information Systems. In: Proc. of the Int. Conf. on Data
Engineering. (1996) 56–65

12. Barbará-Millá, D., Garcia-Molina, H.: The Demarcation Protocol: A Technique
for Maintaining Constraints in Distributed Database Systems. The VLDB Journal
3 (1994) 325–353

13. Hsu, C., Rattner, L.: Metadatabase Solutions for Enterprise Information Integra-
tion Problems. DATA BASE 24 (1993) 23–35

14. Kantere, V., Mylopoulos, J., Kiringa, I.: A distributed rule mechanism for multi-
database systems. In: CoopIS/DOA/ODBASE. (2003) 56–73

15. Liebig, C., Malva, M., Buchmann, A.P.: Integrating Notifications and Transactions:

Concepts and X2TS Prototype. In: EDO. (2000) 194–214
16. Koschel, A., , Kramer, R.: Configurable Event Triggered Services for CORBA-

based Systems. In: EDOC. (1998) 306–318

