Dynamic Intra- and Inter-Enterprise Collaboration Using an Enhanced Multidatabase Architecture

Cristian Pérez de Laborda · Christopher Popfinger · Stefan Conrad

popfinger@cs.uni-duesseldorf.de

Department of Computer Science
University of Düsseldorf, Germany
Outline

- Requirements analysis
- Architecture
- Characteristics
- Implementation
- Link Patterns
- Current and future work
Preliminaries

- Local data sources typically raised autonomously
- Data sources fit the special needs of the local users
- Local autonomy preserves data ownership:
 - Correctness
 - Consistency
 - Up-to-dateness
- Logical and physical heterogeneity
Intra- and Inter-Enterprise Collaboration

- Shared access to information among
 - cooperating departments of a single company
 - (temporary) collaboration of multiple companies (virtual corporations)

- Requirements
 - Integration of legacy data sources
 - Information system applicable to data policy
 - Preservation of data ownership
 - No central authority
 - *Support of volatile data sources*

⇒ Evaluation of a push-based replication strategy
Basic Functionality

1. Administrator makes a subset of its data accessible
2. Remote peers subscribe to specific part of the data
3. Publisher creates individual delivery schedule for each subscriber
4. Initial transfer of schema and data
5. Propagation of data modifications to the subscribers according to delivery schedules
6. Subscribers can join or leave at any time
Characteristics

- Autonomy and Heterogeneity
 - Dynamic interconnection of autonomous and heterogeneous data sources
 - Feasible trade-off between local autonomy and reasonable degree of information sharing
 - Peers can choose level of participation (which data is imported/exported)
 - Specific arrangements among partners required

- No central authority
 - No centralized data storage
 - No central event broker (publish/subscribe systems)
 - No single-point-of-failure
Characteristics (II)

- Wrapper organized as P2P system
 - Data exchange exclusively negotiated pairwise
 - Network of self-responsible peers
 - Volatile peers

- Standardized Exchange Format: Common representation of heterogeneous data (based on OWL)

- Local integration
 - No global schema
 - Individual (local) integration strategies
 - Definition of integrity constraints and index structures on imported data
Characteristics (III)

- Replication
 - Improving data availability and query performance
 - Lazy single master replication: one master and multiple read-only replicas
 - Individual refreshment strategies: immediate, periodical, aggregated,...
 - Export of imported data
 - Direct updates: Updates are replicated from the master to the slaves directly
 - Cascading updates: Updates are replicated from an imported replica on a slave to another slave
Characteristics (IV)

- Push-based protocol
 - Publish/Subscribe concepts
 - Push-based propagation of data (and schema) modifications to subscribers
 - Propagation queues on publisher:
 - Individual queues for each subscriber
 - Resend updates after network breakdown or failure of the target system
 - Wrapper with event detection subsystem
Wrapper Component

![Diagram of Wrapper Component]

- **Event Processor**
- **Event Monitor**
- **Mediator Interface**
- **Controller**
- **Query Manager**
- **Source Specific Query Interface**

Database Systems:
- Enhanced Active Database System
- Passive Database System
- Flat File/XML Data Source

Integration:
- **DBMS**
 - ENP
 - Integrated Active Mechanisms
- **Database Repository**

Event Handling:
- Active event notification
- Event polling
Link Patterns

- Composition of information platform either planned or evolved dynamically
- *Link Patterns* for the description and modeling of data flows in the information system
- Based on UML syntax
Link Patterns (II)

Elementary Link Patterns

Basic Data Node

Subscriber

Publisher

Basic Application Node

Consumer

Generator

Data Independent Link Patterns

Publisher - Subscriber

Synchronize

Data Hub

Data Processor

Distributor

Fallback

Data Backbone

Fallback connection, activate only in case of failure
Data Sensitive Link Patterns
Current and Future Work

Current Work

- Implementation of wrapper component for relational sources
- Definition and evaluation of several exchange formats
- Analysis of network traffic and scalability

Future Work

- Support of semi-structured and unstructured sources
- Access Control and Security
- Compression
- Tools for administration, monitoring, and performance analysis
Thank you for your attention!

popfinger@cs.uni-duesseldorf.de